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Non-uniform magnetodistortive ordering in Jahn-Teller 
antiferromagnets 
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Kishinev 28. USSR 
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Abstract. It is shown that the non-uniform phase CM exist in Jdu-Teller antifer- 
romagnets under a magnetic field near the boundary of the antiferromawetic and 
pseudospin-flop phases. The existence of non-unilorm phase results in characteris- 
tic peculiarities in the field dependence of the magnetic moment and orthorhombic 
deformation. 

1. Introduction 

In crystals with a sublattice of Jahn-Teller ions the phonon exchange gives rise to 
correlations between electronic states of different ions. With a decrease in temperature 
these correlations cause a transition to the orbitally ordered phase; the corresponding 
local Jahn-Teller deformations appear to be ordered too-the so-called cooperative 
Jahn-Teller effect [l]. At the same time the magnetic intersite interaction also exists 
and can lead to a transition into the magneto-ordered phase. In Jahn-Teller crystals 
these two possible types of ordering, magnetic and structural, often appear to be in 
competition. Then only one of them is realized, the one corresponding to  the stronger 
interaction and causing a larger splitting of the degenerate ground states of the Jahn- 
Teller ions. However, if the favourable ordering appears to be of antiferromagnetic 
(AFM) type, it can be destablized by external fields. As a consequence in Jahn-Teller 
antiferromagnets under a magnetic field the pseudospin-flop (PSF) phase is realized 
where strong magnetic ordering and weak structural ordering coexist [2,3]. Near the 
boundary of the AFM and PSF phases the free energies of both phases are almost 
equal because the transition between them is of the first order. This means that  
even weak additional interactions have to be taken into account in such a situation, 
because they can lead to the appearance of a new phase. As has been shown in [4] 
such a phase, which is intermediate between the AFM and PSF phases, does appear if 
weak intrasublattice interactions of a certain kind are accounted for. In the present 
paper, gradient interactions are considered and the problem of the appearance of a 
non-uniform phase near the boundary of the AFM and PSF phases i s  investigated (the 
appearance of non-uniform ordering in antiferromagnets under a magnetic field may 
serve as an analogue of such a situation [5]). 
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2. A F M  tetragonal crys ta l  w i t h  non-Kramers  doublet 

As in [2-41 we consider the case of an AFM tetragonal crystal with a non-Kramers 
doublet as a ground state of one of the ion sublattices. Crystals such as HoPOl and 
HoAsO, may serve as examples [l]. It is convenient to describe the non-Kramers 
doublet by a pseudospin S = f .  One can choose the basis with the Sa-component 
corresponding to the magnetic dipole moment along the tetragonal e axis and the S, 
and S, components corresponding to electron quadrupole moments in the basic plane. 
The Hamiltonian which accounts for both the magnetic and the Jahn-Teller (of b,, 
type only; see [Z]) quadrupole-quadrupole interactions is as follows: 
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To analyse the non-uniform distribution of S" let us  proceed as is usually done, 
from the Hamiltonian (1) to its phenomenological analogue, i.e. energy functional E: 

E = / w  dV = /(uJ,,+uJ') dV ( 2) 

separating the uniform term wo and non-uniform term w' .  The uniform term may be 
written in the form 

tuo = -JSf(r)Sf'(r) - ASL(r)S;'(r) - h [ S : ( r )  + S;'(V)] , (3) 

Here the value of mean magnetic field J = Cm J,,/Q, is negative for antiferro- 
magnets; A = Cm A,,/Ro is the value of the mean quadrupole field, which is pro- 
posed to be positive, as in the majority of rare-earth tetragonal Jahn-Teller crystals 
[l]; h = i g P H / Q , ,  where n, is the elementary cell volume. Only intersublattice inter- 
actions are taken into account. The magnetic and quadrupole moments of elementary 
volume are proportional t o  m,(r)  = f[S:(r)+S:'(r)] and m,(r) = f[Sf(r)+Si'(r)], 
respectively. Note that the existence of a non-zero quadrupole moment m,(r) in the 
basic plane causes the simultaneous appearance of a corresponding orthorhombic d i 5  
tortion that is proportional to m,(r) [Z]. It is convenient to introduce also the AFM and 
antiferrodistortive parameters Iz(r) = f[.S:(r)-$'(r)] and I= (T)  = L[SL(y) -S i l ( r ) ] ;  
the relations between S:sa, mT,i and 

The non-uniform term w' may be written as a series over space derivatives of 
the S;,t'(r) order parameters; i t  is more convenient to use derivatives of m=,z(r)  
and Ic,z(r).  As the appearance of an invariant linear term in the first derivatives is 
Forbidden in centrosymmetric tetragonal crystals the first non-vanishing terms in w' 
are 

are S;" = m, f I, and Si?' = m, & I z .  

where a = I,Z and r1 ,2 ,3  = r , y , z .  The only terms in (4) that can give rise to 
non-uniform orderings are those with negative y.  It is known that non-uniform struc- 
tures often result from competition between interactions with nearest and next-nearest 
neighbours (see, e.g. [6]). In the Jahn-Teller crystals under consideration the vibronic 
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coupling leads to quadrupolequadrupole interactions of a ferrotype and of a long range 
[l]. This means tha t  there is no competition between quadrupole interactions with 
different coordinating spheres and consequently the coefficients of the space deriva 
tives of m, and 1, has to be positive. The magnetic interactions of short-range nature 
with different coordinating spheres, in contrast, often have different signs; this may 
result in the well known non-uniform structures in magnetics [6]. In compounds with 
a stable AFM structure, as in the case under consideration, the coefficient of the space 
derivatives of the AFM parameters l2 obviously has to be positive. At the same time 
the instability of ferromagnetic ordering means that the coefficient y corresponding 
to the FM parameter m, has to be negative. It is obvious that non-uniform ordering 
does arise when the decrease in energy caused by terms with derivatives of m, is larger 
than the increase in  energy caused by other terms from (4) with positive y. Below we 
suppose that this condition is fulfilled, i.e. the coefficients of the derivatives of m, are 
much greater in value than the other coefficients in (4). Then (4) can be rewritten as 
follows: 

w; = YII (am,/aZ)’ +YL [ ( a m , / a ~ ) ~  + (amZ/ay)’] . (5) 

If the coefficients yI1 and yL in (5)  are negative, the more frequently oscillating is 
the non-uniform structure, then the greater is the energy gain. To stabilize the evolu- 
tion of the non-uniform phase the invariants containing higher derivatives of S i , z ( ~ )  
with positive coefficients must be taken into account. Because of these invariants the 
free energy of the non-uniform phase increases and SL,z have to change gradually as 
a result. Accounting for the second derivatives of m,, we receive for w‘ finally 

3. Non-uniform structures at low t empera tu res  

The general analysis of possible non-uniform structures is known to be rather compli- 
cated. So we restrict ourselves to the case of low temperatures (T IJI, [AI); in this 
case the relation (st)2 + (SF)’ = 1 is fulfilled: 

S 2 ( T ) 2  +s;(r)* = 1 a = 1,II  (7) 

in the continuum model. Condition (7)  confines the number of independent order 
parameters to two only instead of the initial four S;,?, The two parameters can 
conveniently he chosen as m and 8, where m = d m ,  t an0  = m,/m,. One can 
easily find that 

m, = mcosg 

m, = msino 

I ,  = -sin8 

1, = J C 2 c o s 0 .  

In the variables m and 0 the uniform part wo is 

w 0 -  - -J(m2-sin2@)-A(m’ -cos20)-2hmcos8 (9) 
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whereas, in the non-uniform part (6), mcos0 has to be substituted instead of m,. 
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Let us consider first pure uniform structures. Minimizing wo over 8 ,  one finds that 

and inserting (IO) into (9) gives 

J + [(h: - h2)/hz]m2 h < h2 
-J - 2h h > h, 

zu0 = 
~~~ ~~~ 

h, = d ( - J - A ) ( - J + A )  h,=->+Ay (12) 

From equation (11) it follows immediately that a t  h < h, the coefficient for m2 
is positive; thus the phase with m = 0 is the most stable. In accordance with (IO) 
and (8) the condition m = 0 means that Si = = 1 and SL = 0, i.e. this 
solution corresponds to AFM phase without quadrupole and structural orderings. At 
h > h i  the coefficient for m2 i n  (10) becomes negative and the most stable phase 
appears to be that with m = 1. In accordance with (IO) and (8) i t  corresponds to the 
magnetodistortive PSF phase where both magnetic ordering and quadrupole ordering 
exist: 

Two signs of SL." correspond to the two possible orientations of the Jahn-Teller or- 
thorhombic deformation. Finally a t  h > h, the crystal is in the paramagnetic (PM) 
phase with Sl = S;l = 1, S i  = 0. The energies of these phases are 

EAF = JV EpSF = V [ J  + (h: - h2)/h2] EpM = V(-J  - 2 h ) ,  ( 1 4 )  

V is the crystal volume. This is just the result obtained in [2,3]. 

(10) one obtains 

w' = -r l l (h2/h~)4mZ(am/az)2 - yl(h2/h22)4m2[(am/ax)2 + (am/ay)T 

Let us  now take account of the non-uniform contribution. From equations (6) and 

+ 4rull(hz/hi;)[m~zm/ar2 + ( a m / d ~ ) ~ ] ~  + 4al(h2/h3{[m azm/ax2 

+ + [md2m/ay2 + (am/ay)']'}. (15) 

The behaviour of m ( r )  is determined from the condition of the functional E minima. 
However, in the general case, such a minimization procedure cannot be done exactly. 
That is why another way is used as a rule, i.e. one chooses a certain non-uniform 
distribution m ( r )  and compares its energy with the energy of uniform structures. 
Consider first the distribution depending on z only, i.e. the one-dimensional non- 
uniform structure. This is the case with yII < 0, yL > 0, when S;,z(~) do not depend 
upon x and y. So we choose 

m = sin2( kr) , (16) 
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In accordance with (16), while moving along the z axis, one goes from a pure AFM 
region (at  z = 0, where m = 0) to a PSF region (at  z = rr/2k,  where m = 1). In 
the intermediate range between z = 0 and z = a / 2 k ,  S! decreases from S: = 1 to 
S,l = h / h ,  and S;l increases from = -1 to Syl = h / h , .  As for S;" describing the 
sublattice quadrupole moments, they are equal to zero at  z = 0; then their absolute 
values increase with increase in z S monotonically and Si' non-monctmically) and 
reach the values 5': = Si1 = ,,/& at  z = a / 2 k .  

The non-uniform distribution (16) possesses in accordance with (15) the following 
energy: 

E,, = V [ J +  - h z ) / h 2  + ~ y l l ( h 2 / h ~ j k 2  + 4 ~ ~ , ~ ( h ~ / h i ) k ~ ] ,  (17) 

The energy E,, has its minimal value at  k = k,:  

where x = 0 . 0 2 4 .  Comparing this value with ( 1 4 )  one finds that there always is the 
field range hhu c h < h;ti where the non-uniform structure is more stable than the 
AFM and PSF structures (a t  any values of y and CY): 

hk ,  = h , ( l  + y2x1/CYhz)--'/Z 

hiti = h , ( l  - yZXz/CYhz)-"z x1 = 0.065 xZ = 0.039. (19) 

The AFM and PSF phases are realized at  h < hku and h > hku respecuvely. 'Itansi- 
tions from a non-uniform structure to the AFM and PSF phases are of the first order. 

Figure 1 shows the field dependence of the magnetic moment parameter .WZ = 
( l /V)Jm,dV.  One can see that the one-step increase in M, that took place at  
uniform AFM ordering and PSF ordering [3] is now divided into two  steps a t  hk,, 
and h;,, inside this field interval M , ( h )  = $h/h ,  which is proportional to the field. 
Figure 2 shows the field dependence of &, = ( l / V )  m,dV, the parameter of crystal 
orthorhombic deformation. 

h l l J l  

Figure 1. Field dependence of the non-uniform 
phase magnetic parameter M ,  (A/lJI = 0.8; 
-$/olllJI = 10): - - -, M , ( H )  behaviour when 
the non-uniform phase is absent. 

Figure 2. Behaviour of the non-uniform 
phase deformstion parameter Q. (A/lJI = 0.8; 
?/a IJI = IO): - - -, Q = ( X )  behaviour when 
the nonuniform phase is absent. 
II 11 
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Let us now consider the (2, &dependent ordering at rll > 0, < 0. In this case, 
non-uniform structures can be realized that are more complicated than those of the 
one-dimensional case discussed above. To illustrate this we examine helow the non- 
uniform ~ ~ ~ structure ~ ~~~~ ~~~~~~~ of vortex ~~~~ type ~ ~~ (for pure magnetic ~~ ~ materials, ~~~ ~~~ vortex ~ ~ ~~~ ~~ type ~~~ ~ structures 
were examined in [7]). We supposethat m(r)  = m(p/po),  where p = is 
the distance from the vortex axis that is parallel to the crystal c axis to  the r point; 
the vortex radius po is the distance from the vortex axis to the points where the 
non-uniform distribution converts into the uniform distribution. Then for the vortex 
energy one can obtain the following expressions: 

c v  = ~ P $ [ J +  D(hf - ha)/h? - YL(~’/~:)(B/P;) + ai(hz/h%C/P$)I (20) 
2 am 1 

D = 2 4  m’(z)zdz B = 2 4  (a,> z d z  

The number of vortices appearing in the unit volume is N = ~ r - ’ p ; ~ l - ’ ,  where 1 is 
the vortex length and the coefficient p is determined by the method of vortex packing 
(p = r (2f i ) - ’  for triangular lattice, p = r/4 for a square lattice, etc). Then the 
energy of unit volume of the non-uniform vortex phase E, = Ncv takes the form 

E, = P [ J  + D(h: - h2)/hz - YJ.(~’/G)(B/P:) + a~ih~/hzZ)(C/P$)I.  (22) 

The energy E,  has its minimum value at  po = p,,,: 

EV(pmLn) = P[J + D(h: - h2)/hz - (7:/4.i)(hz/h:)(B2/C)I. 

On the other hand, if the volume occupied by vortices were in the uniform, AFM or 
PSF phases, its energy density would be 

= J N ~ P ; ~  = JP = P[J  + (h ;  - h2) /h2] .  (24) 

Comparing these energies (23) and (24), we come to the following conclusions: at  
h = h,, the crystal jumps from the AFM phase to the vortex phase and then at 
h = h,, another first-order transition takes place from the vortex phase to the PSF 
phase: 

h,, = h,(l + y~Bz/4a,h,DC)-’12 

h,, = h,[1 - y:B2/4aLhZ(1 - D)C]-’lz. 

The values of h,, and h,, are determind by the parameters E ,  C and D that  depend 
upon m ( r )  in accordance with (21 ) .  

Up to now we have not made any assumptions about the concrete behaviour of 
m(p),  which determines the distribution of the magnetic moment and the orthorhom- 
bic deformation inside the vortex. There may be two qualitatively different types of 
m ( ~ )  behaviour: 
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(i) vortex I with m(0) = 1 and m(po) = 0; 
(ii) vortex I1 with m(0) = 0, m(p,) = 1. 
I t  is the PSF phase that is realized on the axis of vortex I ,  and it  is the AFM 

phase at  its boundary. While moving from vortex boundary to its centre the magnetic 
moment and absolute value of the quadrupole moment increase from zero to hfh, and 
d m ,  respectively. There is quite the opposite picture for vortex 11, i.e. the 
AFM phase on the axis and the PSF phase a t  the boundary. These two distributions 
may be described by the following relations: 

,,I = { Sin2(V/2fo) P 6 Po 
1 f > Po 

Using (26), one finds from (21) that 

D, = 0.28 DII = 0.72 5, = 4, = 1.24 C, = CII = 21.0. (27) 
Figure 3 shows the field dependence of the energies of the AFM, PSF and non- 

uniform phases, calculated in accordance with (23) and (24). Comparing these ener- 
gies, one concludes that first a t  h = h,, vortices I appear and then a t  h = h,  ( h ,  
is given by equation (12))  they are changed by vortices 11; the latter disappear a t  
h 2 hv2.  It is conceivable that in passing from vortices I to vortices I1 the uniform 
areas between vortices I (they are in AFM phase) become the centres of vortices 11. 

The field dependence of the magnetic moment of the vortex structure is shown in 
figure 4. There are three jumps of M , ,  at  h = h , , ,  h , ,h , , .  A t  h,, < h < h, ,  the 
magnetic moments of vortex lattices are given by t.he expressions 

vortices I 
(28) 

Ma = PDIhfhz 
M, = pD,,hfh, vortices 11. 

That  is, in vortex phases the magnetic moment is linear in field, as i t  is for the non- 
uniform structure of the distribution depending on z only. [<- HZ 0,5].!I;:I 0.25 00 

I 
~ 

-1 .a 
I - 

7 , 1 
c1 

- 
~ 

a hvi ‘h, h 
-1 .2 0 0.5 0.7 

h l l J l  

Figure 3. Field dependence of energies of A F M  Figure 4. Field dependence of the vwtex mag- 
(curve A), vortex I (curve B). vortex I1 (curve netic parameter MZ (A/lJI = 0.8; -i:/e~IJl = 
C )  and PSF (curve D) phases (A/IJl = 0.8; 10): - - -, Mz(,(x) behaviour when the non- 
r:larlJI= 10). uniform phase is ahsent. 
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In the above equations (13), there are two possible signs of the orthorhombic 
deformation in the PSF phase; the situation with the crystal quadrupole moment 
and corresponding crystal orthorhombic deformation for a vortex structure is more 
complicated. For the vortex I structure the quadrupole moment and orthorhombic 
deformation vanish at  the boundary of the vortices; this means that the quadrupole 
moments (deformations) of different vortices I are not correlated. Therefore no definite 
conclusion about the quadrupole moment of the whole crystal can be drawn in such a 
situation; however, because of the random distribution of deformation signs the total 
quadrupole moment (deformation) evidently has to be close to zero. With vortices 11, 
the uniform areas between the vortices are in the PSF phase, and deformation in these 
areas is different from zero. As a consequence the deformations inside the different 
vortices I1 have to have the same sign; otherwise the order parameters possess d i 5  
continuity at  the boundary of the uniform and non-uniform areas. The corresponding 
field dependence of Q, resembles that in figure 2; the first jump of Qz takes place at  
h = h, ,  when vortices I are changed into vortices 11. 

4. Conclusion 

In conclusion we wish to emphasize once more that the investigation of Jahn-Teller 
AFM behaviour under a magnetic field H can give iniportant information about the 
weak interactions, which are not manifested directly at  H = 0. The gradient inter- 
actions discussed above which initiate the non-uniform ordering are shown to cause 
the pronounced peculiarities in the field dependence of the magnetic moment and 
Jahn-Teller deformation. The investigation of these features alIows one to appreciate 
the values of the corresponding microscopic parameters and to clarify the picture of 
different types of ordering. 
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